
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

Multiple discrete energy levels and the bistable state of weak anchoring
NLC cells
Yang Guochena; Guan Ronghuab; Huai Junxiaa

a Physics Institute of Hebei University of Technology Tianjin 300130 PR China, b North China Electric
Power University Baoding 071003 PR China,

Online publication date: 11 November 2010

To cite this Article Guochen, Yang , Ronghua, Guan and Junxia, Huai(2003) 'Multiple discrete energy levels and the
bistable state of weak anchoring NLC cells', Liquid Crystals, 30: 10, 1225 — 1233
To link to this Article: DOI: 10.1080/02678290310001601967
URL: http://dx.doi.org/10.1080/02678290310001601967

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/02678290310001601967
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Liquid Crystals ISSN 0267-8292 print/ISSN 1366-5855 online # 2003 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/02678290310001601967

Multiple discrete energy levels and the bistable state of weak
anchoring NLC cells

YANG GUOCHEN{*, GUAN RONGHUA{{ and HUAI JUNXIA{

{Physics Institute of Hebei University of Technology, Tianjin 300130, PR China

{North China Electric Power University, Baoding 071003, PR China

(Received 17 January 2003; accepted 3 June 2003 )

The weak anchoring nematic liquid crystal (NLC) cell is investigated with regard to energy.
Because the Gibbs free energy of liquid crystal system used in theory does not include
temperature and entropy, and because the equations and boundary conditions for dG~0 are
also the mechanical equilibrium conditions of the continuum, the Gibbs free energy G is
equivalent to the energy E of the liquid crystal continuum. There are multiple solutions
which satisfy these equations and boundary conditions, each solution corresponding to a
certain energy value. We call these discrete energy values and energy levels. Adopting a
simple liquid crystal cell model, the energy levels are calculated in detail by means of
analytical and numerical methods. The results show that there are three energy levels (or
more in certain cases). The values and sequence of the energy levels are related to the external
field and anchoring parameters. The relationships between the energy level structure and the
bistable. Fréedericksz transition are disussed, together with their influence on the response
time. The physical condition for the existence of more than three energy levels is also given.

1. Introduction

Recent experiments have shown that the first order

Fréedericksz transition and bistable state exist in the

nematic liquid crystal (NLC) cell under the action of an

external field [1–5]. Theoretical investigations of these

phenomena have also been made [6–8]. In these

theoretical works the Gibbs free energy of the NLC

is a very important quantity.
However, temperature and entropy are not contained

in the Gibbs free energy G used in the theory. The dif-

ferential equation and boundary conditions of angular

deflection of the director (angular deflection is Q in this

paper, and is a function of z) obtained from the first

order variations dG~0, are also the mechanical equi-

librium conditions for LC bulk and surface [9]; thus G

is also the energy E of the liquid crystal continuum. G

consists of three parts, of which (i) Frank elastic free

energy [10] can be considered as the elastic energy of

the continuum, (ii) surface anchoring energy can be

considered as interface potential energy of the con-

tinuum, (iii) diamagnetic or dielectric free energy can

be considered as the potential energy of the continuum

in an external field, originating from the magnetic

or electric moment of molecules in the external field.

Therefore, the investigation of the Gibbs free energy G

of a liquid crystal cell is equivalent to a study of the

energy E of the liquid crystal continuum.
We note that the differential equation with boundary

conditions for the angular deflection of the director

obtained from dG~0 has three or more solutions. Each

solution corresponds to a mechanical equilibrium state

and a certain energy value E, so E may have multiple

values. One can make a comparison with the solution

of the stationary Schrödinger equation of a microcosmic

particle in quantum mechanics [11]. The director angular

deflection Q(z) is equivalent to the stationary wave

function of a particle. The differential equation and

boundary condition of Q(z) are equivalent to those of a

stationary Schrödinger equation. The energy E of a

liquid crystal continuum satisfying mechanical equili-

brium conditions is equivalent to the energy eigen value

of a particle. In quantum mechanics theory, the eigen

energy is also called the energy level. Accordingly, the

energy of a liquid crystal continuum satisfying mechan-

ical equilibrium conditions is also called an energy

level. Similarly, we call the mechanical equilibrium state

of the lowest energy level the ground state; the others

are excited states.

In this paper, we study the energy levels of weak

anchoring NLC cells under an external field. The main

contents are: (i) the energy levels and corresponding

director distribution, i.e. angular deflection function

Q(z); (ii) the relationship between the energy levels and*Author for correspondence; e-mail: yang_gc@hotmail.com

LIQUID CRYSTALS, VOL. 30, NO. 10, OCTOBER, 2003, 1225–1233

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
7
:
0
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



the external field as well as the parameters of anchoring

energy; (iii) the relationship between energy levels and

the Fréedericksz transition and the bistable state. We

prove that there may be more than three discrete energy

levels in weak anchoring NLC cells under certain

conditions. The value and sequence of energy levels

relate to the external field. As a result, the first order

Fréedericksz transitions occurs and the bistable state is

formed.

The significance of the investigation of energy levels

is as follows. First, energy level is diectly related to the

Fréedericksz transition and the existence of a bistable

state. Second, the energy level structure affects the

calculation of response and relaxation times. Finally, it

is a new physical phenomenon for the NLC cell, as a

classical macroscopic object, to have multiple discrete

energy levels. Certainly, the importance of this phe-

nomenon is related to the physical meaning of ‘excited

state’ mentioned above. In the mechanics view, an

excited state is the mechanical equilibrium state, but the

energy E in an excited state is not the smallest. From

the viewpoint of thermodynamics, we shall point out

that Gibbs free energy in an excited state is minimal,

but is not the smallest, so it is a metastable state.

The arrangement of this paper is as follows. In § 2, a

simple liquid crystal cell model is adopted in order to

simplify the mathematical process and numerical calcu-

lation; but this does not influence the main physical

conclusion. In § 3, a series of equations to determine

energy levels are derived, and numerical results of the

reduced Gibbs free energy are obtained and described

in some figures. In § 4, diagrams of reduced energy

levels and the corresponding mechanical equilibrium

state Q(z) are given for some typical cases; we also

describe some application examples. In § 5, the condi-

tion for more than three energy levels in a weak

anchoring NCL cell is given. In § 6 the states obtained

by dG~0 are discussed. The mathematical proof for the

metastable state is presented in the appendix.

2. Theoretical model of the weak anchoring NLC cell

In order to study the energy level structure of the

weak anchoring NLC cell, we consider a very simple

model of thickness l. An external magnetic field H is

applied parallel to the substrates. The Oz Cartesian axis

is perpendicular to the substrates lying in the z~0 and

z~l planes. Assuming that the easy direction e, both at

the top and bottom substrates, is along the Ox axis,

e and H can be written as:

e~ 1, 0, 0ð Þ

H~ 0, H, 0ð Þ

and the director n can be written as:

n~ cosr, sinr, 0ð Þ
where Q is the angle between n and the Ox axis, and is a

function of z. The anchoring free energies at the z~0

and z~l planes are equal, and can be expressed by [6]:

gs z~l~
1
2

A sin2
�� rl 1zf sin2 rl

� �
gs z~0~

1
2

A sin2
�� r0 1zf sin2 r0

� � for z~l

for z~0
ð1Þ

where Q0 and Ql are the azimuthal angles at z~0 and

z~l, respectively, and f is an anchoring parameter. The

Gibbs free energy of system can be written as

G~S

ðl

0

1

2
k22

dr
dz

� �2

{
1

2
xaH

2 sin2 r

" #
dz

z
1

2
SA sin2 r0 1zf sin2 r0

� �
z

1

2
SA sin2 rl 1zf sin2 rl

� �
ð2Þ

where S is the area of the substrates, k22 is the twist

elastic constant and xa is the magnetic anisotropy of the

liquid crystal medium.
From the first order variation dG~0, we obtain the

equation of Q:

k22
d2r
dz2

zxaH2 sinr cosr~0 ð3Þ

and boundary condition:

A sinr0 cosr0 1z2f sin2 r0

� �
~k22

dr
dz

z~0j

A sinrl cosrl 1z2f sin2 rl

� �
~{k22

dr
dz

z~lj :

ð4Þ

It should be pointed out that equations (3) and (4)

are also the mechanical equilibrium conditions for the

LC bulk and surface, respectively. Obviously, there are

two trivial solutions: (i) Qw0, the uniform solution (the

corresponding state is called the uniform state); (ii)

r: p
2
, the saturation solution (the corresponding state

is called the saturation state). In addition, there is a

non-trivial solution Q~Q(z), the disturbed solution (the

corresponding state is called the disturbed state).

From equation (3) we obtain

dr
dz

~+H
xa
k22

sin2 rm{ sin2 r
� �� �1

2

, ð5Þ

where Qm is the value of Q at the z~l/2 plane. Then the

boundary condition (4) can be expressed as:

H
xa
k22

sin2 rm{ sin2 r
� �� �1

2

~A sinr0 cosr0 1z2f sin2 r0

� �
:

ð6Þ
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From equation (5), one has

dz~
1

H

k22

xa

� �1
2 1

sin2 rm{ sin2 r
� �1

2

dr ð7Þ

then

z~
1

H

k22

xa

� �1
2
ðr zð Þ

r0

1

sin2 rm{ sin2 r
� �1

2

dr ð8Þ

and

H~
2

l

k22

xa

� �1
2
ðrm

r0

1

sin2 rm{ sin2 r
� �1

2

dr: ð9Þ

Equations (9), (6), (8) determine the disturbed state Q(z)
completely.

Gibbs free energy corresponding to the uniform,

saturation and disturbed states, GU, GS and GD,

respectively, are

GU~0 ð10Þ

GS~S {
1

2
xaH

2lzA 1zfð Þ
� �

ð11Þ

GD~S
1

2
xaH

2 sin2 rm{xaH
2

� ðrm

r0

sin2 r

sin2 rm{ sin2 r
� �1

2

dr

3
5

zSA sin2 r0 1zf sin2 r0

� �
: ð12Þ

We conclude that equation (3) with boundary condition

(4) has three kinds of solution corresponding to

uniform, saturation and disturbed states. Note that

there may be more than one disturbed state solution in

certain condition.

3. The reduced Gibbs free energy

We now consider the Gibbs free energy further. We

adopt the parameter u

u~ sin2 rm ð13Þ
to characterize the state of texture of the liquid crystal,

as in [6, 7], and make a transformation of Q to a new

variable denoted by v [12]

v~
tan2 r
tan2 rm

, v0~
tan2 r0

tan2 rm

ð14Þ

We also introduce the reduced anchoring strength a,
the reduced field strength h and the reduced Gibbs free

energy g as

a~
Al

2k22
, h~

H

H0
c

H0
c~

p

l

k22

xa

� �1
2

" #
,

g~G
l

2k22S
:

ð15Þ

Equations (6)–(12) can then be expressed as

p

2
h~a

v0

1{v0ð Þ 1{uzuv0ð Þ

� �1
2

1z2f
uv0

1{uzuv0

� � ð16Þ

p

2
h~I1 ð17Þ

gU~0 ð18Þ

gS~{
p

2
h

� 	2

za 1zfð Þ ð19Þ

gD~u
p2

4
h2{phI2

� �
za

v0

1{uzuv0

�

1zf
uv0

1{uzuv0

� �� ð20Þ

where

I1~

ð1
v0

1

2 v 1{vð Þ 1{uzuvð Þ½ �
1
2

dv ð21Þ

I2~

ð1
v0

v

2 v 1{vð Þ 1{uzuvð Þ½ �
1
2

1

1{uzuv
dv

ð22Þ

By means of equations (16)–(20), the reduced Gibbs free

energy gU, gS and gD can be solved for given h.

Now we discuss the reduced free energy obtained by

numerical calculation. Combining equations (16) and

(17) results inð1
v0

1

2 v 1{vð Þ 1{uzuvð Þ½ �
1
2

dv

~a
v0

1{v0ð Þ 1{uzuv0ð Þ

� �1
2

1z2f
uv0

1{uzuv0

� �
:

ð23Þ

When u is given, the corresponding v0 can be calculated

from equation (23). Then h can be obtained from

equation (17) via (21); the reduced free energy gU, gS
and gD can then be obtained from equations (18)–(20).

Hence the values of the reduced Gibbs free energy g

versus h are obtained. The results calculated depend on

the values of the anchoring parameters a and f. Here

we take three typical sets of parameters as examples: (a)

a~1.0, f~0.0; (b) a~1.0, f~20.2; (c) a~0.1, f~20.2.

The results are illustrated in figures 1, 2 and 3

respectively.

From many calculations and from the three typical
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sets of figures shown, we know that there are three

different cases: (1) for a certain value of a and fo0,

there are three values of g (gU, gS and gD) for a given

value of h. The value of gD is the smallest in a certain

range of h (i.e. hth, hsat); (2) for a small value of a and

fv0 there are four values of g gU, gS, g
1ð Þ
D and g

2ð Þ
D

� 	
for a given value of h. The value of g

1ð Þ
D is the smallest

value in the certain range of h (i.e hth, hsat); (3) for a

smaller value of a and fv0, there are three values of g

(gU, gS and gD) for a given value of h. However the

value of gD is the largest for each value of h.

4. Diagram of the reduced energy levels

In order to explain the multiple discrete energy levels

of the NLC cell we draw the diagram of the energy

levels and corresponding mechanical equilibrium state

Q(z) for a given value of h. The Gibbs free energy G is

equivalent to the energy E of the NLC cell, i.e. E~G.

The reduced energy e may be written as e~El/2k22S,

and e equals the reduced Gibbs free energy g. Hence

figure 1 (b), 2 (b) and 3 (b) also represent the reduced

energy e versus h.

Denoting the reduced energy of the ground states by

e0 and excited states by e1, e2 …, one can calculate the

mechanical equilibrium state Q(z) for each value of ei

(i~0, 1, 2 …) from equation (8), which gives

z

l
~

2

ph

ðr
r0

1

u{ sin2 r
� �1

2

dr

where

r0~ tan{1 uv0

1{u

� 	1
2

:

We can then draw the diagrams of reduced energy

levels as well as the corresponding Q(z) for a given value

of h.
The results calculated for some typical case are

shown in figures 4–6. The anchoring parameters used in

Figure 1. (a) The reduced external field h as a function of
state parameter u; (b) the reduced free energy g as a
function of the reduced external field h. The anchoring
energy parameters used in the calculation are a~1.0,
f~0.0. We see that h is the monotonous function of u
(dh/duw0), and there are three values of g (gU, gS and
gD) for a given value of h.

Figure 2. (a) The reduced external field h as a function of
state parameter u; (b) the reduced free energy g as a
function of the reduced external field h. The anchoring
energy parameters used in the calculation are a~1.0,
f~20.2. We see that, with the increase of u, the curve h
increases (dh/duw0) first, then reaches a maximum (dh/
du~0) and finally decreases (dh/duv0). For a given
value of h, there are two corresponding values of
u (the smaller is u

1ð Þ
D and the larger u

2ð Þ
D ). Hence there

are four values of the reduced free energy g
gU, gS, g

1ð Þ
D and g

2ð Þ
D

� 	
for a given value of h.
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the calculation are the same as for figure 2, i.e. a~1.0,

f~20.2. The reduced field h~0.5663, 0.5712 and

0.5867 for figures 4, 5 and 6, respectively. The symbols

QU, QS, r 1ð Þ
D , r 2ð Þ

D denote the mechanical equilibrium

states; i.e. uniform state, saturation state, disturbed

state 1 (corresponding to u
1ð Þ
D ) and disturbed state 2

(corresponding to u
2ð Þ
D ), respectively. Because QUw0,

QSw90‡ are well known, QU and QS are omitted from

the diagrams.

One can carry out similar calculations for many

other cases. From many calculations we reach the

conclusion that energy levels for the NLC cell have the

following characteristics:

1. There is one reduced energy level e0 correspond-

ing to the ground state (or states), and two or

three levels e1, e2, e3 corresponding to excited

states.

2. The ground state corresponding to the lowest

energy level e0 is altered when the external field is

changed. Moreover, when the external field is

changed the corresponding mechanical equili-

brium states are also altered.

3. The lowest energy level e0 may be degenerate, i.e.

there are two corresponding mechanical equili-

brium states, as shown in figure 5, for example.

Now we discuss some physical applications for the

energy level diagrams.

4.1. The Fréedericksz transition

From the diagram of the energy levels, we can see

that the ground state corresponding to the lowest energy

level e0 is not fixed. Usually, for hvhth, hthvhvhsat
and hwhsat, the ground state is: a uniform state, a

disturbed state and a saturation state (hth and hsat are

the threshold field and saturation field), respectively. So

the Fréedericksz transition can be considered as the

transition of an excited state to the ground state when

the value of h changes from 0 to large values. The

Figure 3. (a) The reduced external field h as a function of
state parameter u; (b) the reduced free energy g as a
function of the reduced external field h. The anchoring
energy parameters used in the calculation are a~0.1,
f~20.2. We see that h is a monotonous function of u
(dh/duv0), and there are three values of g (gU, gS and
gD) for a given value of h.

Figure 4. Reduced energy levels (left diagram) and corresponding mechanical equilibrium states Q(z) (right diagram) for the
reduced field h~0.5663. The anchoring parameters used in the calculation are a~1.0, f~20.2. r 1ð Þ

D and r 2ð Þ
D correspond to

the two mechanical equilibrium disturbed states with u
1ð Þ
D ~0:1510, u

2ð Þ
D ~0:9110, respectively. The unit of Q is the radian; r 1ð Þ

D
is the ground state.
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mechanical equilibrium state will undergo two transi-

tions; one is from a uniform state with u~0 to a

disturbed state with 0vuv1; the other is from a

disturbed state to a saturation state with u~1. At the

transition point, if the parameter u changes contin-

uously, the transition is second order; otherwise it is

first order.

In the cases of figure 2 where the anchoring

parameters a~1.0, f~20.2, and figure 3 where

a~0.1, f~20.2, we find first order transitions. In the

former case of (a~1.0, f~20.2), with increase of h, the

reduced energy level diagram is changed from that

depicted in figure 4 to figure 5 and finally to figure 6.

The ground state is altered from disturbed state r 1ð Þ
D

with u
1ð Þ
D ~0:2151 to saturation state QSw90‡ with us~1

at transition point hS~0.5712. It is first order because

u
1ð Þ
D =uS. In the latter case (a~0.1, f~20.2), the

uniform state QUw0 with u~0 transforms directly to

the saturation state QSw90‡ with us~1 at h~0.1801; it

is also first order.

4.2. The bistable state

As we see from figure 5, e0~gS~g
1ð Þ
D , i.e. both the

saturation state QS~90‡ with u~1 and the disturbed

state 1 g
1ð Þ
D with u

1ð Þ
D ~0:2151 are the ground states;

between the two states u~1 and u
1ð Þ
D ~0:2151 there is

another state with u
2ð Þ
D ~0:8831 corresponding to the

reduced energy e2. So the saturation state and the

disturbed state 1 form a bistable state at h~0.5712.

Similarly, from figure 3, e0~gU~gS at h~hsat~0.1801.

Between the two states u~0 and u~1, there is another

state uD~0.531, i.e. a disturbed state QD with e1~gD.

Thus the uniform and saturated states form a bistable

state at h~0.1801.

From these statements, we can propose the condition

Figure 5. Reduced energy levels (left diagram) and corresponding mechanical equilibrium states Q(z) (right diagram) for the
reduced field h~0.5712. The anchoring parameters used in the calculation are a~1.0, f~20.2. r 1ð Þ

D and r 2ð Þ
D correspond to

the two mechanical equilibrium disturbed states with u
1ð Þ
D ~0:2151, u

2ð Þ
D ~0:8831, respectively. The unit of Q is the radian. The

energy level e0 is degenerate, i.e. both saturation state and disturbed state 1 are the ground state.

Figure 6. Reduced energy levels (left diagram) and corresponding mechanical equilibrium states Q(z) (right diagram) for the
reduced field h~0.5867. The anchoring parameters used in the calculation are a~1.0, f~20.2. r 1ð Þ

D and r 2ð Þ
D correspond to

the two mechanical equilibrium disturbed states with u
1ð Þ
D ~0:5420, u

2ð Þ
D ~0:7052, respectively. The unit of Q is the radian.

There are two energy levels e1~g
2ð Þ
D , e2~g

1ð Þ
D between e0 and e3 (e0~gS, e3~gU), so the transition from QUw0 to QSw90‡

should jump both r 2ð Þ
D and r 1ð Þ

D .

1230 G.-C. Yang et al.
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for existence of the bistable state. It is: if two states

with the state parameter u1 and u2 (u1vu2), are ground

states, and between these two states there is another

(excited) state with the state parameter u3, and

u1vu3vu2; then these two states form a bistable state.

4.3. Influence on response time

As can be seen from figure 6, the ground state e0 is

the saturation state QSw90‡. The uniform state QUw0

is the excited state corresponding to e3. Between the two

states u~0 and u~1 there are two more states

u
1ð Þ
D and u

2ð Þ
D

� 	
corresponding to r 1ð Þ

D and r 2ð Þ
D . So,

when the transition from state QUw0 to state QSw90‡
occurs, the state parameter u must jump the two states

u~u
1ð Þ
D ~0:5420 and u~u

2ð Þ
D ~0:7052. That is to say,

both mechanical equilibrium states r 1ð Þ
D and r 2ð Þ

D may

appear in the process of transition as intermediate

states. As a result, the response time is affected.

5. The condition for the existence of four discrete
energy levels

The case of four energy levels (two of them disturbed

states) is more interesting, because it may be applied to

some physical phenomena such as the first order

transition and bistable state. We now discuss the

situation where there are two disturbed solutions. From

figure 2 (a) we see that this condition is equivalent to the

extreme value of the curve h(u) in the region (0, 1) of u,

i.e. there is a value u in the region (0, 1), written as ua,

satisfying:

dh

du
u~uaj ~0: ð24Þ

Differentiating equations (16) and (17) with respect to

u separately and substituting the results in (24), we

obtain

dv0

du
~

1

2
v0 1{v0ð Þ 1{uzuv0ð Þ½ �

1
2

ð1
v0

v

1{vð Þ 1{uzuvð Þ

� �1
2 1

1{u
dv{

v0 1{v0ð Þ
1{u

ð25Þ

dv0

du
~

v0 1{v0ð Þ
1{u

v0 1{uzuv0ð Þ 1{uzuv0ð Þ½ z2f uv0z2u{2ð Þ�
ð1{uzuv0Þ 1{uzuv20

� �
z2fuv0 1{uð Þ 3{2v0ð Þzuv20

�
 �{1

( )
:

ð26Þ

Using equations (25), (26) and combining with bound-

ary condition (23), we can solve for u. For a given a

and f, if the value of u obtained is located in the region

[0, 1], the condition (24) for two solutions is satisfied.

Otherwise, the condition (24) is not satisfied. The result

of numerical calculation is shown in Fig. 7. The area in

figure 7 shows the region in which the two parameters

satisfy the condition (24), i.e. the condition for which

there are more than three energy levels. From the figure

we can see that f must be negative and a is restricted to

a certain range.

6. Discussion

We have so far determined that the NLC cell may

have three or more discrete energy levels, each corres-

ponding to a certain mechanical equilibrium state, such

as a uniform, saturation or disturbed state. We now

discuss the thermodynamic properties of these states.

According to statistical thermodynamic theory [13], the

states with the minimal value of Gibbs free energy G

are either stable or metastable states. If the value of G

is not only the minimal but also the smallest, the state

with the smallest G is stable. On the other hand, if the

value of G is minimal only, then its state is metastable.

The former is stable over a large interval of state

variance, and the latter is stable only over a small

interval of state variance.{
The condition for minimal G is [14]

dG~0 ð27Þ

d2G > 0 ð28Þ
i.e if the states satisfy these two equations simulta-

neously, then they are stable or metastable.

We have proved that all the states rU, rS, r
1ð Þ
D and r 2ð Þ

D

discussed in the previous section satisfy equations (27)

and (28) simultaneously. Hence, all these states are

Figure 7. The area in which the two parameters a and f
satisfy the conditions for having two solutions for the
disturbed state.

{Landau and Lifshitz stated that if a body is in a metastable
state, then after a sufficiently large deviation from it the body
can not return to its initial state. Although a metastable state is
stable within creation limits, sooner or later the body is bound
to pass from it to another stable state.
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stable or metastable. The state corresponding to e0 is

stable and the states corresponding to e1, e2 … are

metastable. The proof is given in the appendix.

Appendix

The proof of dG~0 and d2Gw0 for all mechanical

equilibrium states

Because the solutions of Q(z) are obtained from

dG~0, it is necessary to check whether they satisfy

d2Gw0 only. We adopt the method given in [14, 15],

which can be described as follows:

Suppose that �rr zð Þ is the solution of dG~0, let

r zð Þ~�rr zð Þzeg zð Þ ðA1Þ
where g(z) is an arbitrary function of z in principle and

e is a variable unrelated to z. Equation (A1) implies

dr zð Þ~eg zð Þ: ðA2Þ
Substituting equation (A1) into equation (2), G will be a

function of e, denoted by G(e). d2Gw0 is equivalent to

d2G eð Þ
de2

e~0j > 0: ðA3Þ

Equation (A3) can be used to judge whether �rr zð Þ
makes G minimal. Substituting equation (A1) into (2)

and making the second order derivative with e, we

have

d2G eð Þ
de2

e~0j ~S

ðl

0

{xaH2 cos 2�rr
� �

g2

�

zK22
dg

dz

� �2
#
dz

zA cos 2�rr0z2f sin2



�rr0 3 cos2 �rr0{ sin2 �rr0

� ��
g2 0ð Þ

zA cos 2�rrlz2f sin2 �rrl



3 cos2 �rrl{ sin2 �rrl

� ��
g2 lð Þ



:

ðA4Þ

We adopt Jacobi’s intensive condition in variational

theory [11, 13] to prove d2Gw0. Because we only check

whether �rr zð Þ makes G minimal in a particular region,

we can put some restrictions on g(z), for example, we

adopt

g zð Þ~
X?
n~n0

Cn sin
np

l

� 	
z ðA5Þ

where Cn is an arbitrary constant quantity and n0 is an

arbitrary integer satisfying

n0 >
l

p

xa
k22

� �1
2

H ðA6Þ

Substituting equation (A5) into (A6) and taking note

that cos 2�rr¡1, we have

d2G eð Þ
de2

e~0j > 0:

Although some restrictions on g(z) are made, this does

not affect the property that �rr zð Þ makes G minimal.{ So

we have proved that the solutions obtained by dG~0

make G minimal.

Why are the values of G for all mechanical

equilibrium states minimal? This is due to the existence

of singularities in functional G. We can rewrite

equation (2) of using the same method and symbols

as in [16]:

G~S

ð?
{?

1

2
k22

dr
dz

� �2

{
1

2
xaH

2 sin2 r

" #
m zð Þ{m z{lð Þ½ �dz

zS

ð?
{?

1

2
A sin2 r 1zf sin2 r

� �
d zð Þ{d z{lð Þ½ �dz

ðA7Þ

where m(z) is the unit step function and d(z) is the

Dirac function. Both m(z) and d(z) are singular

function.

To explain the absence of maxima, we examine an

ideal simple example, and assume that all states of the

system can be expressed by j, and that the Gibbs free

energy G is a function of j and can be described by the

curve of figure 8. The two points A and B of this figure

are both correspond to minimal values of G, and the

point C is a singularity.
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